1,273 research outputs found

    Exciton storage in CdSe/CdS tetrapod semiconductor nanocrystals: Electric field effects on exciton and multiexciton states

    Get PDF
    CdSe/CdS nanocrystal tetrapods are interesting building blocks for excitonic circuits, where the flow of excitation energy is gated by an external stimulus. The physical morphology of the nanoparticle, along with the electronic structure, which favors electron delocalization between the two semiconductors, suggests that all orientations of a particle relative to an external electric field will allow for excitons to be dissociated, stored, and released at a later time. While this approach, in principle, works, and fluorescence quenching of over 95% can be achieved electrically, we find that discrete trap states within the CdS are required to dissociate and store the exciton. These states are rapidly filled up with increasing excitation density, leading to a dramatic reduction in quenching efficiency. Charge separation is not instantaneous on the CdS excitonic antennae in which light absorption occurs, but arises from the relaxed exciton following hole localization in the core. Consequently, whereas strong electromodulation of the core exciton is observed, the core multiexciton and the CdS arm exciton are not affected by an external electric field

    CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1

    Get PDF
    Melanocytes reside within the basal layer of the human epidermis, where they attach to the basement membrane and replicate at a rate proportionate to that of keratinocytes, maintaining a lifelong stable ratio. In this study, we report that coculturing melanocytes with keratinocytes up-regulated CCN3, a matricellular protein that we subsequently found to be critical for the spatial localization of melanocytes to the basement membrane. CCN3 knockdown cells were dissociated either upward to the suprabasal layers of the epidermis or downward into the dermis. The overexpression of CCN3 increased adhesion to collagen type IV, the major component of the basement membrane. As the receptor responsible for CCN3-mediated melanocyte localization, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that acts as a collagen IV adhesion receptor. DDR1 knockdown decreased melanocyte adhesion to collagen IV and shifted melanocyte localization in a manner similar to CCN3 knockdown. These results demonstrate an intricate and necessary communication between keratinocytes and melanocytes in maintaining normal epidermal homeostasis

    Quantized Majorana conductance

    Full text link
    Majorana zero-modes hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool to identify the presence of Majorana zero-modes, for instance as a zero-bias peak (ZBP) in differential-conductance. The Majorana ZBP-height is predicted to be quantized at the universal conductance value of 2e2/h at zero temperature. Interestingly, this quantization is a direct consequence of the famous Majorana symmetry, 'particle equals antiparticle'. The Majorana symmetry protects the quantization against disorder, interactions, and variations in the tunnel coupling. Previous experiments, however, have shown ZBPs much smaller than 2e2/h, with a recent observation of a peak-height close to 2e2/h. Here, we report a quantized conductance plateau at 2e2/h in the zero-bias conductance measured in InSb semiconductor nanowires covered with an Al superconducting shell. Our ZBP-height remains constant despite changing parameters such as the magnetic field and tunnel coupling, i.e. a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins, by investigating its robustness on electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of non-Abelian Majorana zero-modes in the system, consequently paving the way for future braiding experiments.Comment: 5 figure

    Differential IL-21 signaling in APCs leads to disparate Th17 differentiation in diabetes-susceptible NOD and diabetes-resistant NOD.Idd3 mice.

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease that shows familial aggregation in humans and likely has genetic determinants. Disease linkage studies have revealed many susceptibility loci for T1D in mice and humans. The mouse T1D susceptibility locus insulin-dependent diabetes susceptibility 3 (Idd3), which has a homologous genetic interval in humans, encodes cytokine genes Il2 and Il21 and regulates diabetes and other autoimmune diseases; however, the cellular and molecular mechanisms of this regulation are still being elucidated. Here we show that T cells from NOD mice produce more Il21 and less Il2 and exhibit enhanced Th17 cell generation compared with T cells from NOD.Idd3 congenic mice, which carry the protective Idd3 allele from a diabetes-resistant mouse strain. Further, APCs from NOD and NOD.Idd3 mice played a central role in this differential Th17 cell development, and IL-21 signaling in APCs was pivotal to this process. Specifically, NOD-derived APCs showed increased production of pro-Th17 mediators and dysregulation of the retinoic acid (RA) signaling pathway compared with APCs from NOD.Idd3 and NOD.Il21r-deficient mice. These data suggest that the protective effect of the Idd3 locus is due, in part, to differential RA signaling in APCs and that IL-21 likely plays a role in this process. Thus, we believe APCs provide a new candidate for therapeutic intervention in autoimmune diseases

    Oxytocin promotes functional coupling between paraventricular nucleus and both sympathetic and parasympathetic cardioregulatory nuclei

    Get PDF
    The neuropeptide oxytocin (OXT) facilitates prosocial behavior and selective sociality. In the context of stress, OXT also can down-regulate hypothalamic–pituitary–adrenal (HPA) axis activity, leading to consideration of OXT as a potential treatment for many socioaffective disorders. However, the mechanisms through which administration of exogenous OXT modulates social behavior in stressful environmental contexts are not fully understood. Here, we investigate the hypothesis that autonomic pathways are components of the mechanisms through which OXT aids the recruitment of social resources in stressful contexts that may elicit mobilized behavioral responses. Female prairie voles (Microtus ochrogaster) underwent a stressor (walking in shallow water) following pretreatment with intraperitoneal OXT (0.25 mg/kg) or OXT antagonist (OXT-A, 20 mg/kg), and were allowed to recover with or without their sibling cagemate. Administration of OXT resulted in elevated OXT concentrations in plasma, but did not dampen the HPA axis response to a stressor. However, OXT, but not OXT-A, pretreatment prevented the functional coupling, usually seen in the absence of OXT, between paraventricular nucleus (PVN) activity as measured by c-Fos immunoreactivity and HPA output (i.e. corticosterone release). Furthermore, OXT pretreatment resulted in functional coupling between PVN activity and brain regions regulating both sympathetic (i.e. rostral ventrolateral medulla) and parasympathetic (i.e. dorsal vagal complex and nucleus ambiguous) branches of the autonomic nervous system. These findings suggest that OXT increases central neural control of autonomic activity, rather than strictly dampening HPA axis activity, and provides a potential mechanism through which OXT may facilitate adaptive and context-dependent behavioral and physiological responses to stressors

    IL-21 restricts T follicular regulatory T cell proliferation through Bcl-6 mediated inhibition of responsiveness to IL-2

    Get PDF
    T follicular regulatory (Tfr) cells control the magnitude and specificity of the germinal centre reaction, but how regulation is contained to ensure generation of high-affinity antibody is unknown. Here we show that this balance is maintained by the reciprocal influence of interleukin (IL)-2 and IL-21. The number of IL-2-dependent FoxP3+ regulatory T cells is increased in the peripheral blood of human patients with loss-of-function mutations in the IL-21 receptor (IL-21R). In mice, IL-21:IL-21R interactions influence the phenotype of T follicular cells, reducing the expression of CXCR4 and inhibiting the expansion of Tfr cells after T-cell-dependent immunization. The negative effect of IL-21 on Tfr cells in mice is cell intrinsic and associated with decreased expression of the high affinity IL-2 receptor (CD25). Bcl-6, expressed in abundance in Tfr cells, inhibits CD25 expression and IL-21-mediated inhibition of CD25 is Bcl-6 dependent. These findings identify a mechanism by which IL-21 reinforces humoral immunity by restricting Tfr cell proliferation

    Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage

    Get PDF
    Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio

    Estimating Ground-Level PM(sub 2.5) Concentrations in the Southeastern United States Using MAIAC AOD Retrievals and a Two-Stage Model

    Get PDF
    Previous studies showed that fine particulate matter (PM(sub 2.5), particles smaller than 2.5 micrometers in aerodynamic diameter) is associated with various health outcomes. Ground in situ measurements of PM(sub 2.5) concentrations are considered to be the gold standard, but are time-consuming and costly. Satellite-retrieved aerosol optical depth (AOD) products have the potential to supplement the ground monitoring networks to provide spatiotemporally-resolved PM(sub 2.5) exposure estimates. However, the coarse resolutions (e.g., 10 km) of the satellite AOD products used in previous studies make it very difficult to estimate urban-scale PM(sub 2.5) characteristics that are crucial to population-based PM(sub 2.5) health effects research. In this paper, a new aerosol product with 1 km spatial resolution derived by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was examined using a two-stage spatial statistical model with meteorological fields (e.g., wind speed) and land use parameters (e.g., forest cover, road length, elevation, and point emissions) as ancillary variables to estimate daily mean PM(sub 2.5) concentrations. The study area is the southeastern U.S., and data for 2003 were collected from various sources. A cross validation approach was implemented for model validation. We obtained R(sup 2) of 0.83, mean prediction error (MPE) of 1.89 micrograms/cu m, and square root of the mean squared prediction errors (RMSPE) of 2.73 micrograms/cu m in model fitting, and R(sup 2) of 0.67, MPE of 2.54 micrograms/cu m, and RMSPE of 3.88 micrograms/cu m in cross validation. Both model fitting and cross validation indicate a good fit between the dependent variable and predictor variables. The results showed that 1 km spatial resolution MAIAC AOD can be used to estimate PM(sub 2.5) concentrations

    The International X-Linked Hypophosphatemia (XLH) Registry:first interim analysis of baseline demographic, genetic and clinical data

    Get PDF
    Background: X-linked hypophosphatemia (XLH) is a rare, hereditary, progressive, renal phosphate-wasting disorder characterized by a pathological increase in FGF23 concentration and activity. Due to its rarity, diagnosis may be delayed, which can adversely affect outcomes. As a chronic disease resulting in progressive accumulation of musculoskeletal manifestations, it is important to understand the natural history of XLH over the patient’s lifetime and the impact of drug treatments and other interventions. This multicentre, international patient registry (International XLH Registry) was established to address the paucity of these data. Here we present the findings of the first interim analysis of the registry.Results: The International XLH Registry was initiated in August 2017 and includes participants of all ages diagnosed with XLH, regardless of their treatment and management. At the database lock for this first interim analysis (29 March 2021), 579 participants had entered the registry before 30 November 2020 and are included in the analysis (360 children [62.2%], 217 adults [37.5%] and 2 whose ages were not recorded [0.3%]; 64.2% were female). Family history data were available for 319/345 (92.5%) children and 145/187 (77.5%) adults; 62.1% had biological parents affected by XLH. Genetic testing data were available for 341 (94.7%) children and 203 (93.5%) adults; 370/546 (67.8%) had genetic test results; 331/370 (89.5%) had a confirmed PHEX mutation. A notably longer time to diagnosis was observed in adults ≥ 50 years of age (mean [median] duration 9.4 [2.0] years) versus all adults (3.7 [0.1] years) and children (1.0 [0.2] years). Participants presented with normal weight, shorter length or height and elevated body mass index (approximately − 2 and + 2 Z-scores, respectively) versus the general population. Clinical histories were collected for 349 participants (239 children and 110 adults). General data trends for prevalence of bone, dental, renal and joint conditions in all participants were aligned with expectations for a typical population of people with XLH.Conclusion: The data collected within the International XLH Registry, the largest XLH registry to date, provide substantial information to address the paucity of natural history data, starting with demographic, family history, genetic testing, diagnosis, auxology and baseline data on clinical presentation.</p
    • …
    corecore